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Introduction

The cause of autism spectrum disorder (ASD) remains elusive 

despite a large amount of basic and clinical research performed 

over the past 10 years. There are reliable reasons to think that 

ASD is already present at birth, with many neurological 

changes that develop during fetal life in response to various 

heterogeneous factors.

As described in a recent article,1 these include (a) alterations 

to columnar structure that have significant implications for the 

organization of cortical circuits and connectivity, (b) altera-

tions to synaptic spines on individual cortical units that may 

underlie specific types of connectional changes, and (c) altera-

tions within the cortical subplate—a region that plays a role in 

proper cortical development and in regulating interregional 

communication in the mature brain. The relevant involvement 

of the cerebral cortex in substantially altering cortical circuitry 

explains the unique pattern of deficits and strengths that  

characterize cognitive functioning. However, this makes the 
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Abstract

Background and Objective. In a previous study, we showed a new EEG processing methodology called Multi-Scale Ranked Organizing 

Map/Implicit Function As Squashing Time (MS-ROM/IFAST) performing an almost perfect distinction between computerized EEG 

of Italian children with autism spectrum disorder (ASD) and typically developing children. In this study, we assessed this system in 

distinguishing ASD subjects from children affected with other neuropsychiatric disorders (NPD). Methods. At a psychiatric practice 

in Texas, 20 children diagnosed with ASD and 20 children diagnosed with NPD were entered into the study. Continuous segments 

of artifact-free EEG data lasting 10 minutes were entered in MS-ROM/IFAST. From the new variables created by MS-ROM/IFAST, 

only 12 has been selected according to a correlation criterion. The selected features represent the input on which supervised 

machine learning systems (MLS) acted as blind classifiers. Results. The overall predictive capability in distinguishing ASD from other 

NPD cases ranged from 93% to 97.5%. The results were confirmed in further experiments in which Italian and US data have been 

combined. In this analysis, the best MLS reached 95.0% global accuracy in 1 out of 3 classes distinction (ASD, NPD, controls). This 

study demonstrates the value of EEG processing with advanced MLS in the differential diagnosis between ASD and NPD cases. The 

results were not affected by age, ethnicity and technicalities of EEG acquisition, confirming the existence of a specific EEG signature 

in ASD cases. To further support these findings, it was decided to test the behavior of already trained neural networks on 10 Italian 

very young ASD children (25-37 months). In this test, 9 out of 10 cases have been correctly recognized as ASD subjects in the best 

case. Conclusions. These results confirm the possibility of an early automatic autism detection based on standard EEG.
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potential usefulness of EEG recording plausible as a biomarker 

for these abnormalities.

ASD is associated with abnormal neural connectivity.2-7 

Presently, neural connectivity is a theoretical construct that is 

hard to measure, but research in network science and time 

series analysis suggests that neural network structure, a marker 

of neural activity, is measurable with electroencephalography 

(EEG).8

The EEG can measure neural activity and may provide a use-

ful tool to detect children at risk of developing ASD and, thus 

provide an opportunity for early intervention. In a recent review, 

the body of knowledge about the potential of EEG in ASD has 

been carefully described.9 The aim of this review was to exam-

ine evidence for the utility of 3 methods of EEG signal analysis 

in the ASD diagnosis and subtype delineation. Forty studies 

were identified and classified according to the EEG analysis 

method in 3 categories: (a) functional connectivity analysis, (b) 

spectral power analysis, and (c) information dynamics. All stud-

ies identified significant differences between ASD and non-

ASD subjects, confirming the presence of specific EEG 

abnormalities. However, due to high heterogeneity in the results, 

generalizations were difficult to obtain and none of the methods 

alone have been proposed as a new diagnostic tool.

In a previous study, we have shown the ability of a novel 

kind of machine learning system (MLS) named MS-ROM/

IFAST (Multi-Scale Ranked Organizing Map/Implicit Function 

As Squashing Time) developed by the Semeion Research 

Institute in Rome. This system can extract interesting features 

in computerized EEG that allow near perfect distinction of 

ASD children from those who are developing typically.10 This 

proof of concept study showed accuracy values near to 100% 

using a training-testing protocol and 84% to 92.8% using a 

leave-one-out protocol. The similarities among the MLS weight 

matrixes, measured with apposite algorithms, were not affected 

by the age of the subjects. This suggests the MLS does not read 

age-related EEG patterns, but rather invariant features related 

to the brain’s underlying abnormalities.

The aim of this second study is to corroborate the findings 

obtained in the aforementioned pilot study where we distin-

guished ASD subjects from normally developing children. In 

this second study, we compared ASD subjects to children 

affected with other neuro-psychiatric disorders using EEG data 

collected with different equipment from another country 

(United States). In addition, to better circumstantiate the con-

cept of EEG signature, experiments were done in which final 

classifiers have been trained on Italian data and tested on US 

data, and trained and tested on pooled Italian and US data. 

Finally, we trained the MLS on Italian and US data and then 

assessed how 10 completely unknown cases were classified.

Materials and Methods

Study Population

Diagnoses were made by board-certified psychiatrists and 

psychologists according to the DSM-V-TR (Diagnostic and 

Statistical Manual of Mental Disorders, Fifth Edition, Text 

Revision)  criteria. The data were collected over a 5-year 

period for those referred for an EEG assessment. The data was 

submitted to an institutional review board and granted a 

“waiver of approval,” meeting the exemption categories set 

forth by federal regulation 45 CFR 46.101(b) [2] and [4].

Twenty subjects diagnosed with ASD and 20 subjects diag-

nosed with other neuropsychiatric disorders, matched for age 

and gender distribution, were obtained from the institutional 

review board–approved data archive of a psychiatric practice in 

the United States. The 2 groups had the same age range (4-14 

years) and male/female ratio (14/6). None of these children 

were affected by genetic conditions, cerebral malformations, or 

epilepsy. In the comparison group, the range of primary diag-

noses was the following: attention deficit hyperactivity disor-

der (ADHD) (n = 16), mood disorders (n = 2), anxiety 

disorders (n = 2).

EEG Recordings

The EEG data were recorded at a psychiatric center in the 

United States, at resting state, eyes-closed condition. EEG 

acquisition was performed using Mitsar-EEG-10/70-201 

equipment, with impedance maintained below 10 kohm. The 

patients were seated in a slightly reclining chair in a silent 

and low light environment. An Electrocap was used to col-

lect the data according to the international 10-20 system 

with linked ears montage (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, 

C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2). A minimum 

of 20 minutes of total data were recorded in both eyes open 

(10 minutes) and eyes closed (10 minutes) resting condi-

tions. The order of these could vary among patients. This 

study used only the eyes closed data to be consistent with 

our pilot study. Data regarding quantitative EEG (qEEG) 

performed on these 40 cases are provided as supplementary 

information.

The EEG track was then saved in the database. Subsequently, 

10 minutes of recording were exported ASCII files through the 

same acquisition program SystemPlus Evolution and saved, to 

make it possible to read in numerical format.

The EEG file in ASCII format was then included in the pro-

gram’s mathematical neural network for analysis. A continuous 

segment of artifact-free EEG data lasting 10 minutes was used 

to compute multi-scale entropy values and for subsequent anal-

yses of each subject with artificial adaptive systems as described 

below.

EEG Analysis

All EEG data were evaluated and interpreted by the same 

neurophysiologist, a member of the American Board of 

Electroencephalography and Neurophysiology and the 

American Board of Clinical Neurophysiology. The neuro-

physiologist was blinded to the subject’s diagnoses and medi-

cations. Visual inspection of the EEG was performed to search 

for paroxysms that are either focal or lateralizing.
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Extra Cases

As an additional test of validity for our method, it was decided 

to consider 2 other groups of subjects.

The first dataset considered consists of 35 Italian subjects 

(15 ASD, 10 normal development). All the subjects with ASD 

received an independent diagnosis for autism according to 

DSM-5 criteria, which was then confirmed by a qualified psy-

chiatrist at Villa Santa Maria, Tavernerio (Italy). The ADOS 

(Autism Diagnostic Observation Schedule) scale was used for 

diagnosis. The ages in this case ranged from 7 to 14 years. The 

EEG data were recorded at Villa Santa Maria Institute by C.O. 

from the recruited subjects at resting state (eyes-closed and 

eyes-open). The EEG recordings (0.3-70 Hz bandpass) were 

performed by the Micromed device equipped by SystemPlus 

Evolution software, using prewired headsets with cotton elastic 

inside from 19 electrodes in silver and chlorinated plastic posi-

tioned according to the International 10-20 system (ie, Fp1, 

Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, 

O1, O2, and common ground). Registration took about 3 min-

utes and 256-Hz sampling rate and was vigilantly carried with 

the eyes closed.

The second external control dataset consists of 10 children 

(8 males; 2 females) who received an independent diagnosis 

for autism according to DSM-5 criteria. The age of these sub-

jects was clearly very low in comparison with the main study 

group, ranging from 25 to 37 months. No autistic subject was 

found to be affected by genetic conditions, cerebral malforma-

tions documented by neuroimaging or epilepsy. The EEG data 

were derived from 3 to 5 minutes of registration at 256-Hz 

sampling rate carried out in resting state with the eyes closed, 

according to standard methodology and with electrodes posi-

tioned according to the International 10-20 system.

Analysis of EEG Raw Data With MS-ROM IFAST 

Algorithm

The mathematical equations and computer programs described 

below have been created by M.B. at Semeion Research Center.

A description of the mathematical and computational 

characteristics of IFAST has recently been published.11 This 

system uses unsupervised neural networks in the preprocess-

ing phase.12-14

The structure of IFAST is composed of different phases: (1) 

The squashing phase, corresponding to the transformation of 

the EEG channels of each subject into a single vector of fea-

tures. (2) The noise elimination phase, where the dynamic 

elimination of the noisy features from the vector representing 

each subject is performed. (3) The classification phase, that is, 

the intelligent classification of the features of each subject with 

the support of MLS.

Squashing Phase. In technical terms, this phase needs to trans-

form a 2-dimensional matrix of each EEG into a 1-dimensional 

vector. The columns of the EEG matrix are the channels’ values 

and the rows correspond to the EEG discrete time flow. The 

squashing phase is designed to identify the spatial invariants in 

the EEG time flow. Two fundamental aspects should be noted: 

first, This phase is completely blinded: no information about 

the diagnosis of the subjects is known to the processing algo-

rithm; second, after the squashing phase, even EEGs of differ-

ent duration become comparable.

This task has been achieved with the Multi-Scale and 

Ranked Organizing Maps (MS-ROM).

The MS-ROM algorithm owes its name to the self-organizing 

map (SOM) neural network,15 the well-known unsupervised 

algorithm on which it is based. The MS-ROM is a processing 

system composed of 3 steps: sampling, projection and ranking.

During the sampling step, each EEG track is sampled many 

times with different time scales, according to the multiscale 

entropy (MSE) methodology.16,17 At the end of this step, a cer-

tain number of subsamples of the starting EEG track is avail-

able. Then, for each subsample generated through MSE, a 

self-organizing map is initialized and trained. In this way, at the 

end of this step, each one of the subsamples is projected into a 

2-dimensional space, that is the R × C grid of the SOM (R = 

rows, C = columns). All the SOMs share the same dimensions, 

R and C, and the same random starting weights. The decision to 

produce P-scaling processing will result in P subsamples and 

P-trained SOM grids. After the training phase, each cell of the 

grid of the ith SOM includes all the rows of the relevant ith 

subsample considered similar from the 19 EEG channels’ per-

spective and it is summarized by a codebook, that is, the vector 

of the trained weights connecting the input to that cell. After 

the projection step, each grid generated by the SOM is ranked 

according to its cell frequency, also called point-frequency. The 

X and Y coordinates of each ranked grid represent the invariant 

features of this algorithm. The final length of the input vector 

for each EEG track is equals to 2 × (R × C) × P, it depends on 

the number of scaling processing P for each EEG, and on the 

number of the cells of each SOM grid of which both the X and 

the Y coordinates are considered (see Figure 1).

Despite its simplicity, this algorithm has been demonstrated to 

be very efficient in detecting the complex similarities among 

channels in an EEG track. The key to its effectiveness is the rank-

ing process of each trained grid which can transform a geometri-

cal projection into a topological vector. We outline this difference 

for many reasons: SOM artificial neural networks (ANNs) can 

design a tessellation of the input space into a 2-dimensional grid. 

When 2 independent SOMs, with the same number of rows and 

columns, are trained with 2 different samples starting with the 

same random weights, each SOM will generate a codebook map 

influenced by the number of entries and by the input vector vari-

ance. When we rank the cells of each of the 2 SOM grids accord-

ing to their frequency, we ignore the specific metric of each SOM 

and we enhance their topological interrelationship.

In this study, each EEG track has been divided in 5 multiscale 

samples and trained for 100 epochs. Each SOM sample used a 7 

× 7 grid. At the end of the training phase, each EEG was thus 

represented by a vector of 490 features: (49 x-coordinates + 49 

y-coordinates) × 5 samples. The MS-ROM system is imple-

mented in the academic free Semeion Software Suite.
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Noise Elimination Phase. This fundamental phase serves to 

remove most of the noise introduced by the squashing phase. 

The starting 19 EEG variables (ie, the 19 electrodes traces) 

have been substituted with the new 2 × (R × C) × P coming 

from the MS-ROM system but some of them can be redun-

dant or even noisy and must be discard. It should be noted 

that these variables do not correspond to measurable quanti-

ties but correspond to abstractions identified by the system. 

These virtual variables enclose and make more explicit all 

the information present in the EEG trace. In this study, a 

features selection criterion based on the correlation matrix 

has been used since if 2 features are independent, they are 

supposed to be even uncorrelated. From the 490 EEG fea-

tures generated by the MS-ROM preprocessing algorithm, 

we select only those who have a linear correlation index 

with the diagnostic class higher than a certain value arbi-

trarily chosen. All the features having a linear correlation 

index below this threshold are eliminated while the remain-

ing have been used as input data for supervised learning and 

testing.

It is important to note that, as we showed in our previous 

work,11 the particular procedure employed in our method 

can avoid the need of traditional EEG preprocessing before 

characterization.

Classification Phase. The classification phase is executed 

through distinct types of learning machines. We have consid-

ered both the most well-known algorithms and new neural net-

works implemented in many freeware academic software 

packages to facilitate easy replication of our research.18,19

Three different classification tests have been carried out.

Test 1. The main dataset (see “Study Population” paragraph 

in the “Materials and Methods” section) has been divided 

into 2 parts: a subset A consisting of 13 records (4 ASD and 9 

affected by other pathologies) and a subset B consisting of 27 

records (16 ASD and 11 Other pathologies) as shown in Table 

1. This optimal subdivision has been carried out by means of 

an evolutionary algorithm named T&T.20-22 that builds 2 sets, 

set A and set B, trying to approximate the same probability den-

sity function. Traditional techniques, such as cross-validation, 

leave-one-out variant and bootstrapping, do not guarantee good 

results when the global dataset is limited or complex, whose 

data is hyperpoint of an unknown nonlinear function: the sub-

samples extracted are not always representative of the phenom-

enon and do not have the same probability density function. 

The division into training and testing sets on a random basis not 

only does not take into account the problem of outliers but has 

consequences in terms of variability of results.

Figure 1. MS-ROM algorithm dynamics. Multiple SOM elaborations with a 7 × 7 grid are applied to the raw EEG data sampled with 1/1, 
1/2, 1/3, 1/4, and 1/5 pass according to the multiscale sampling procedure. The coordinates of cells are taken as input values for the final 
classifiers, ranked in order of the increasing number of records clustered in each cell. MS-ROM, Multi-Scale and Ranked Organizing Maps; 
SOM, self-organizing map.



Grossi et al 5

Training and testing validation protocol has been used to 

compare the classification tasks. It consists in the execution of 

2 independent procedure. The first, named a-b, uses as training 

set the previously built subset A and the subset B as testing set. 

The second, named b-a, reverses roles using subset B as train-

ing set and subset A as testing. The pair of predictions is then 

averaged to get a final value. Evaluating the results taking into 

account both classifications a-b and b-a prevents the possibility 

of selecting a particularly favorable sample.

The following different learning machines has been used for 

the final classification by processing both datasets: sine net 

neural networks (Sn)23,24; back propagation algorithm (FF_

Bp)25; K-contractive map (K-CM)26; kNN algorithm.27

The objective of this trial is to establish whether, starting 

from the IFAST processing of EEGs, it is possible to distin-

guish between autistic subjects and subjects suffering from 

other pathologies, that is, to determine or not the existence of 

an ASD signature within the EEG.

Test 2. The second experiment has been carried out using 

the data coming from both the countries (ie, the main dataset 

and the first extra dataset). The new Italian–United States (IT-

US) dataset is then composed of 65 cases: 10 typical (IT); 20 

other pathologies (US); 35 ASD (15 IT + 20 US).

The EEG tracks have been subjected to the same procedure 

as the previous case: saved in a database and exported to ASCII 

for processing with MS-ROM/IFAST. The group of 15 ASDs 

consisted of 13 males and 2 females, leading to a male/female 

ratio of 27/8. The control group had a male/female ratio equals 

to 4/6 with and an age ranging from 7 to 12 years. The Other 

Pathologies group was the same previously described.

The cases have been divided into set a and set B, again by 

using T&T algorithm, to perform the same validation process 

previously used. Table 2 shows how the ASD, Control, and 

Other Pathologies subjects have been arranged in the subsets 

and the chance level for each subset.

The objective of this test is to determine whether the IFAST 

method can distinguish between ASD subjects, subjects with 

other diseases and normal subjects. This type of analysis makes 

it possible to further highlight the presence or absence of a sig-

nature in the EEGs of autistic individuals. Moreover, since the 

EEGs come from different sources, it makes it possible to 

understand whether invariances determined by the MS-ROM/

IFAST method have general validity.

Test 3. In the third experiment, the blind predictive power 

of the network was tested. Different methods of artificial 

intelligence have been trained through the modalities previ-

ously seen, dividing into training and testing set the 65 cases 

already used in Test 2 (see Table 3). Then, the second extra 

dataset, consisting of 10 subjects, all with ASD pathology, 

were used in the recall phase to see how much the algorithms 

could recognize completely extraneous pathological cases 

and to determine the MS-ROM/IFAST system’s ability to 

extract invariant properties. Moreover, since the age of the 

subjects of the third dataset is decidedly lower than the ones 

used previously, we propose to understand if an early ASD 

diagnosis is possible.

Results

Test 1

The objective of this test is to determine whether it is possible 

to distinguish between autistic subjects and subjects suffering 

from other pathologies, using exclusively the IT data. Table 4 

shows the results of the MS-ROM/IFAST protocol with learn-

ing machines using only 12 of the 490 features generated by 

MS-ROM system and selected by means of the linear correla-

tion criterion, previously explained. To perform this kind of 

features extraction we chose the threshold θ = 0.35 for all our 

tests. The 0.35 value was considered reasonable since the 

objective was to reduce the number of variables and eliminate 

redundancy; we wanted to consider only the informative vari-

ables. This value of θ has allowed us to have a 98% reduction 

in the number of variables and to obtain excellent results.

With the training-testing protocol, the overall predictive 

capability of the machine learning system employed in sorting 

out autistic cases from normal controls was consistently above 

90%. Two of the machine learning systems reached an accu-

racy rate higher than 95%, as shown in Table 4. This confirms 

the superiority of this approach over the standard protocols 

available today as described in the review by Gurau et al.9

The ASD and Other Pathologies columns correspond to the 

sensitivities with regard to each group to be classified.

Table 1. Summary of Data.

Subset
Autism Spectrum 

Disorder
Other 

Pathologies
Records, 

n
Chance 
Level, %

A 4 9 13 69.00

B 16 11 27 59.26

Total 20 20 40  

Table 2. Sample Division Into Sets A and B.

Subset
Autism Spectrum 

Disorder Control
Other 

Pathologies
Records, 

n
Chance 
Level, %

Set A 18 4 8 30 60.00

Set B 17 6 12 35 48.57

Total 35 10 20 65  

Table 3. Summary of Data Relevant to Test 3.

Subset
Autism Spectrum 

Disorder
Other 

Pathologies
Records, 

n
Chance 
Level, %

A 20 20 40 50.00

B 15 10 25 60.00

Total 35 30 65  
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The best results were obtained using the K-CM algorithm, 

with an overall accuracy of 98.4%.

One of the prerogatives of K-CM is the possibility of visual-

izing the internal relationships among the test records as a 

semantic map, as shown in major detail in the mathematical 

appendix. Figure 2a and b show the clustering of the records in 

the 2 testing sets of the K-CM experiment according to their 

degree of membership to the 2 diagnostic classes in the train-

ing-testing sequence a-b (Figure 2a), where B was the testing 

set, and b-a (Figure 2b) where training and testing sets have 

been reversed. The unique misclassification is clearly visible 

(Figure 2a).

In other words, Figure 2 shows a graph that is able to describe 

the relationships among all the test subjects. Each node repre-

sents a subject, two nodes are linked if their distances from each 

train record are similar. This mechanism allows a natural clus-

tering between similar objects. In particular, it clarifies why the 

error occurred: The network judged the ASD_15 subject to be 

more similar to controls than to other ASDs. The value of each 

connection expresses how similar the 2 connected nodes are and 

are represented by the thickness of the link. We expect, as it hap-

pens, that elements belonging to the same cluster have medium-

high similarity values (thick line) while the link of that allows 

the passage from one to the other has a low value (fine line). The 

graph has been built on the basis of the matrix of “meta-dis-

tances” produced by the K-CM algorithm (see Equation 2 in the 

mathematical appendix).

To get a better understanding of the potential of the sys-

tem, the fitness of predictions, expressed as fuzzy member-

ship to ASD class, and the age of the subjects have been 

plotted (Figure 3). Although Sine Net makes two errors in the 

classification, its output for ASD subjects has been chosen to 

be plotted since the fuzzy nature of the results allows us to 

consider them as the membership to the output class. Thus, 

Figure 3 shows 18 subjects despite of 16 since also the 2 mis-

takes must be considered being a part of the actual network 

outputs. It is however interesting to observe how even if the 

errors are not considered the trend, although obviously with a 

minor slope, remains the same (Figure 4). It should be noted 

that the r value is low (r = −0.21), and more important, the 

trend is inversely proportionate to the age. This is an impor-

tant finding because we should expect to obtain better results 

at a very early age. As an example, we add to the plot the 

regression line related to the ASD subset predictions.

Test 2

The objective of this test is to determine whether it is possible 

to distinguish between autistic subjects, subjects suffering from 

other pathologies and normal subjects, using both the IT and 

the US data. To better substantiate the concept of the EEG sig-

nature, the cases, both in the previous and in the current study, 

until now, were considered separately depending on the coun-

try of origin (IT or US). The procedure was the same as that 

applied in the US case though, in this case, the system had to 

distinguish between three classes. The results attained in this 

experimentation are shown in Table 5.

The average overall accuracy obtained with two of the four 

MLS employed (K-CM and KNN) is remarkably high for 1 out 

of 3 types of prediction, reaching 95%.

Figure 5a and b shows clustering of the records in the 2 test-

ing sets according to their degree of membership to the 2 diag-

nostic classes in the training-testing sequence a-b (Figure 5a) 

and b-a (Figure 5b), according to K-CM semantic map. The 4 

misclassifications are clearly visible in Figure 5a and none 

appears in Figure 5b.

Test 3

The objective of this test is to understand if an early diagnosis 

is possible by testing the model on data from the EEG of young 

children. Table 6 shows the behavior in testing of neural net-

works and leaning machines tuned on the data of Test 2, 40 

subjects in training and 25 in testing. In this case, using the 

usual threshold criterion, linked to the linear correlation, 49 

variables were selected corresponding to a linear correlation 

lower than 0.2.

Once neural networks and MLSs have been trained, the 10 

new subjects have been placed as inputs. The relevant classifi-

cation results are shown in Table 7. Observe that, while BP and 

SineNet respond in a fuzzy way, through a gradient of member-

ship, K-CM responds in a crisp way, with 0 or 1 values.

Discussion

There is a paucity of literature available on the EEG changes 

associated with autistic spectrum disorders as witnessed by the 

Table 4. Predictive Results From the EEG Features Detected by 
the MS-ROM Algorithm.

MLS ASD, %
Other 

Pathologies, %
Overall 

Accuracy, % Errors

FF_Bp(ab) 81.30 100.00 90.60 3

FF_Bp(ba) 100.00 88.90 94.40 1

Average 90.60 94.40 92.50 2

  

FF_Sn(ab) 87.50 100.00 93.80 2

FF_Sn(ba) 100.00 88.90 94.40 1

Average 93.80 94.40 94.10 1.5

  

K-CM(ab) 93.80 100.00 96.90 1

K-CM(ba) 100.00 100.00 100.00 0

Average 96.90 100.00 98.40 0.5

  

kNN(ab) 93.80 100.00 96.90 1

kNN(ba) 100.00 88.90 94.40 1

Average 96.90 94.40 95.70 1

Abbreviations: MS-ROM, Multi-Scale Ranked Organizing Map; MLS, machine 
learning system; FF_Bp, feed forward back-propagation neural network; 
FFSn, feed forward sine-net neural network; K-CM, K-contractive map 
neural network; kNN, k-nearest neighbors algorithm; ab, training on subset a 
and testing on subset b; ba, training on subset b and testing on subset a.
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recent review by Gurau et al.9 However, most of the articles 

published refer to abnormalities in neural connectivity at both 

the global and local levels rather than to the potential diagnos-

tic usage of this methodology. Our work appears to open a new 

frontier where mathematical optimization can emphasize the 

value of the data embedded in the EEG.

Autism spectrum disorder is characterized by a number of 

pathological changes that develop during fetal life in response 

to various heterogeneous toxic factors. These include (a) alter-

ations to columnar structure that have significant implications 

for the organization of cortical circuits and connectivity, (b) 

alterations to synaptic spines on individual cortical units that 

may underlie specific types of connectional changes, and (c) 

alterations within the cortical subplate—a region that plays a 

role in proper cortical development and in regulating interre-

gional communication in the mature brain.1 This pathophysio-

logical substrate makes plausible the potential usefulness of 

EEG recording as a biomarker of loss of complexity as result of 

these abnormalities. The core of our algorithmic system relies 

in the mathematical optimization of the complex information 

Figure 2. Clustering of the records in the 2 testing sets according to their degree of membership to the 2 diagnostic classes in the training-
testing sequence a-b (figure a) and b-a (figure b). The line thickness indicates the strength of the connection, the thicker the connection, the 
greater the membership.
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embedded in the EEG. The EEG complexity is completely 

blinded to human eyes even for the most expert neurophysiolo-

gist who is trained to observe single channels traces one at 

time, like most mathematical methods based on power spectra 

analysis. For this reason, we are not extracting particular fea-

tures like those coming from quantified EEG, which express 

useful clinical insights but, on the contrary, we use the native 

information, that is, the unprocessed EEG, in a global way ana-

lyzing each time point of EEG referred to all 19 channels series. 

Each time point raw, made up by 19 numbers, becomes an indi-

vidual. Our system groups together the most similar individu-

als through SOM. The clustering structure essentially reflects 

the EEG complexity. The final classifiers learn to distinguish 

ASD from control subject according the different complexity 

of their EEG.

Our original article addressed the use of artificial neural net-

works for an automatic classification of ASD. Useful data can 

be obtained by extracting spatial information contained in the 

resting EEG. The core of the procedure was that the ANNs did 

not classify individuals using EEG data as an input. Rather, the 

data inputs for the classification were the weights of the con-

nections within an ANN trained to generate the recorded EEG 

data. The results were superior to those obtained with the more 

advanced currently available nonlinear techniques.

Now, the use of the same procedure based on EEG data from 

another country, collected with a different EEG machine, and 

with different protocols of registration and length (10 minutes 

vs 3 minutes in the original article) adds credibility to the good-

ness-of-fit results proving that the system is able to distinguish 

not only ASD from typically developing subjects but also ASD 

subjects from those with other pathologies (Test 1).

This seems to highlight that a neural networks approach 

shows great potential to identify invariant features independent 

from technicalities related to EEG recording. The system in 

place is remarkable in a number of ways:

(a) Avoidance of preprocessing phase and filtering proce-

dure of EEG data: We have shown that the new algo-

rithms do not require the preprocessing of the EEG be-

fore applying artificial neural networks. On the contrary, 

they use the raw EEG information which can very ef-

ficiently accomplish our final objective. This improve-

ment would resolve the problem of recording data with 

open or closed eyes and could represent an important 

practical simplification of the procedure.

(b) More robust classification phase: We have tested four 

distinct types of learning machines based on a vast array 

Figure 3. Correlation between neural network output in records 
classification in the autism spectrum disorder (ASD) subgroup and 
age of the subjects related to sine-net machine learning system 
(MLS). The interpolation straight line points toward a positive trend 
in the direction of early age. It seems promising to have the best 
results at the smallest ages.

Figure 4. Analysis of the correlation without misclassifications. In 
this case, r = −0.17.

Table 5. Predictive Results From the EEG Features Detected by 
the MS-ROM Algorithm After Training-Testing on Italian and US 
data.a

MLS ASD Control Other Path. Overall accuracy Errors

FF_Bp(ab) 0.78 1 0.92 0.9 7

FF_Bp(ba) 0.88 0.83 0.86 0.86 3

FF_Bp(Avrg) 0.83 0.92 0.89 0.88 5

  

FF_Sn(ab) 0.74 1 0.92 0.89 8

FF_Sn(ba) 0.88 0.83 0.71 0.81 4

FF_Sn(Avrg) 0.81 0.92 0.82 0.85 6

  

K-CM(ab) 0.85 1 1 0.95 4

K-CM(ba) 1 1 0.86 0.95 1

K-CM(Avrg) 0.93 1 0.93 0.95 2.5

  

kNN(ab) 0.85 1 1 0.95 4

kNN(ba) 1 1 0.86 0.95 1

kNN(Avrg) 0.93 1 0.93 0.95 2.5

Abbreviations: MS-ROM, Multi-Scale Ranked Organizing Map; ASD, autism 
spectrum disorder; MLS, machine learning system; FF_Bp, feed forward back-
propagation neural network; FFSn, feed forward sine-net neural network; 
K-CM, K-contractive map neural network; kNN, k-nearest neighbors 
algorithm; ab, training on subset a and testing on subset b; ba, training on 
subset b and testing on subset a.
aThe ASD, Control and Other Pathologies columns correspond to the 
sensitivities with regards to each group to be classified.
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of specific mathematics, showing the robustness of IF-

AST similarly produces a very high accuracy rate. This 

gives consistency to the generalization of these findings 

in the real world.

(c) Extraction of spatial invariants of the EEG through MS-

ROM.

To better circumstantiate the concept of an EEG signature, 

we carried out a second experiment in which final classifiers 

were trained and tested on combined Italian and US data (Test 

2). After cross-validation on this mixed group of 10 typical IT; 

20 other pathologies US; 35 ASD (15 IT + 20 US), the overall 

prediction, related to 1 out of 3 classes, with 2 of the 4 MLS 

employed (K-CM and kNN) reached 92 % of global accuracy. 

This means that the results are not affected by age, ethnicity, 

and technicalities of EEG acquisition, confirming therefore, 

the existence of a specific EEG signature in ASD.

Finally, to be sure that the correctness of the predictions was 

absolutely free from conditioning related to the EEG used, we 

decided to train the neural networks on the dataset of Test 2 and 

to recall 10 ASD subjects completely unknown to the system 

(Test 3). The results obtained were encouraging as, in the best 

case, 10 out of 10 subjects were correctly classified. A further 

prerogative of the 10 new cases used lies in the very low age of 

the patients. The challenging objective that constitutes the end 

of this line of experimentations, in fact, lies precisely in the 

Figure 5. Clustering of the records in the 2 testing sets according to their degree of relationship to the 3 diagnostic classes in training-
testing sequence a-b (figure a) and b-a (figure b).
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construction of a model that allows the earliest possible diag-

nosis of autism spectrum disorders. Both Tests 1 and 2 seem to 

encourage this ambition.

K-CM besides having obtained the best results allows to 

build a semantic map able to represent the relationships 

detected within the test set. The K-CM semantic map is useful 

for evaluating results and capturing further information, such 

as the major similarities between testing records. This neural 

network, as underlined in the appendix, is able to combine the 

kNN technique, effective but sometimes not precise, with the 

most sophisticated artificial intelligence techniques able to 

explain to the maximum the information hidden in the data. 

This combination of different but compatible techniques used 

as a pipeline has allowed to get the best from each one and to 

obtain, in spite of this delicate problem, positive and encourag-

ing results for possible future applications. Moreover, contrary 

to the classical neural networks, K-CM lets the input variables 

interact in an “all against all” mode, in auto-association, before 

being used to determine the output (fuzzy profiling, see math-

ematical appendix). This freedom of interaction makes it pos-

sible for highly nonlinear connections between variables and 

targets to emerge spontaneously.

The implementation of this network, resulting from the 

combination of methods already known and published, is not 

problematic even if, obviously, as the amount of data increases, 

the speed of learning may be affected. However, it should be 

considered that, basically, the actual learning phase is carried 

out at intervals that are rather distant from each other. The diag-

nosis phase of a new subject (recall phase), on the other hand, 

is extremely rapid, so the hypothesis of a system that works 

almost in real time is absolutely plausible and to be hoped. 

Over the past decade, a growing body of evidence points out 

that to effectively treat ASD, the earliest possible detection is 

directly proportional to successful therapy.28-30 This clearly 

implies that the availability of an accurate and relatively inex-

pensive diagnostic method for early diagnosis should be one of 

the medical community’s highest priorities.

Conclusions

This study points out that standard EEGs contain the delicate 

information that can substantially differentiate typically devel-

oping brains from brains belonging to children with ASD, pro-

vided that this information is processed with very sophisticated 

analytical systems like those employed by our group. Our study 

demonstrates how advanced artificial adaptive systems are able 

to distinguish people with autism from both normal and other 

types of neuropsychiatric disease. The average accuracy 

obtained in the ASD versus control subjects classification 

reaches 98.4%, while in the 1 of 3 experiments between ASD, 

control, and other pathologies subjects it reaches 95.0%.

The intelligent systems used seem to be more effective in 

the case of younger children. This is crucial as it would be a 

major step toward early diagnosis.

In addition, although MLS were trained on data from older 

children, it was possible to correctly classify 10 out of 10 cases 

in a much lower age group. This seems to suggest that autistic 

spectrum disorders carry a fingerprint present in EEGs and that 

early diagnosis may be possible.

This procedure has proved effective both on the data 

recorded in Italy and in the United States, confirming that the 

results do not depend on the acquisition mode or on the specific 

devices but only on the type of analysis: the EEG.

We are fully aware of the limitation on relatively small sam-

ple size. Further work is needed before deriving definitive con-

clusions. A larger sample is needed to confirm our results. If the 

relevant results obtained in this limited-sample study were to 

eventually be confirmed in a larger study, and then the open 

question would become: Is this signature already present dur-

ing the first months of a child’s life? Answering this is the aim 

of our future research, which we hope will make a significant 

step forward in the treatment of this impairing disease.

Appendix

K-Contractive Map

To allow a better understanding of the results, in this section, a 

brief explanation about K-CM and its peculiarities will be 

given.

K-CM26 is a methodology consisting of different steps, able 

to solve supervised pattern recognition problems. At first, the 

Table 7. 

Subject FF_Bp FF_Sn k-NN K-CM

Case_1 0.74 0.46 0 0

Case_2 0.77 0.93 1 1

Case_3 0.77 0.98 1 1

Case_4 0.91 1 1 1

Case_5 0.92 1 1 1

Case_6 0.77 0.89 1 1

Case_7 0.77 0.92 1 1

Case_8 0.39 0 1 1

Case_9 0.85 1 1 1

Case_10 0.95 1 1 1

Abbreviations: FF_Bp feed forward back-propagation neural network; kNN, 
k-nearest neighbors algorithm; FF_Sn, feed forward sine-net neural network; 
K-CM, K-contractive map neural network.

Table 6. Results Attained by the MLS Before the Recall Phase.

MLS ASD, % Control, % Accuracy, % Errors

FF_Bp 100.00 100.00 100.00 0

k-NN 100.00 72.73 86.36 3

FF_Sn 91.67 100.00 95.83 1

K-CM 100.00 72.73 86.36 3

Abbreviations: ASD, autism spectrum disorder; MLS, machine learning 
system; FF_Bp, feed forward back-propagation neural network; kNN, 
k-nearest neighbors algorithm; FF_Sn, feed forward sine-net neural network; 
K-CM, K-contractive map neural network.
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source dataset X n p, ,( )  consisting of p  variables and n  

records, is used as input for auto contractive map (AutoCM),31 

an unsupervised neural network particularly effective in mak-

ing explicit the hidden relationships in the data. The values of 

the relationships found by AutoCM are stored in W[ACM], the 

weights matrix. Each record of X n p,( ) is then rewritten tak-

ing into account the values of all the many-to-many relation-

ships in a new fuzzy dataset Z n p, .( )  The Z  transformed 

dataset has been proved to be often more informative than the 

original.26 Z n p,( ) is then split in training and testing set and 

used as input of a kNN classifiers. The complete methodology 

flow is shown in Figure 6.

It should be noted that K-CM is one application of the 

more general contractive map technique according which 

many other classification or regression methods can be 

applied on Z n p, ,( )  in the case of supervised task, and in the 

case of unsupervised dataset many exploratory data analysis 

methods can be used.

One of the further potentials of this method is the capability 

to draw a semantic graph of the relationships among the test 

samples. At first, the Euclidean distance between each test and 

training sample (record + target) is computed according to 

Equation (1).

 D z z t tm i

j

p

m j i j

g

G

m g i g, , , , ,= −( ) + −( )
= =

∑ ∑
1

2

1

2

 (1)

where m n
test

∈ …{ }1 2, , , , i n
train

∈ …{ }1 2, , ,  and g G∈ …{ }1 2, , ,  

denotes the possible targets. In this case, ti g,  corresponds to the 

real class of the ith record of the training set while tm g,  is the esti-

mated class of the mth record in testing. Then, distance matrix 

D D
m i

m i
= { },

,
 is not a square matrix but it is a n n

test train
×  rect-

angular matrix.

Figure 6. The K-Contractive Map (K-CM) flow, from the source data to the classification.

As a second step in the procedure to build the K-CM seman-

tic graph, the distance among the D  distances have to be com-

puted according to Equation (2).

 M D Dm m

j

p

m i m i, ’ , ,= −( )
=

′∑
1

2

 (2)

where m m n
test

, , , , .′∈ …{ }1 2

Since by means of equation (2) the distance matrix of dis-

tances is computed, M  has been named Meta Distance Matrix. 

The Meta Distance Matrix is an n n
test test
×  symmetric matrix.

Now, according to the graph theory, it is possible to use M  

as the weights matrix of a weighted graph G V E M, ,( )  where 

the vertices V are the n
test

 records of the testing set, the edges 

E are all the 
n n
test test
⋅ −( )1

2

 possible connections and M ij  cor-

responds to the weight of the i j,( )  edge.

Many filters can be applied over the graph in order to visual-

ize and highlight the most relevant connection, for example, 

the Minimum Spanning Tree (MST)32 or the Maximally 

Regular Graph (MRG).33 The MST is a spanning tree, that is, a 

tree containing all the vertices, whose sum of edge weights is 

as small as possible. The MRG is a graph built starting from the 

MST by adding the skipped links until the maximum of the 

graph complexity is not reached. The complexity of the graph 

is computed by a specific function named H .33 In this study, 

the MRG filter has been used. The resulting graph tends to put 

nearby elements whose distances from the training records are 

similar. Then, if K-CM performed a good classification it is 

reasonable to expect a clustering of the testing set according to 

the real belonging classes and a highlight of the misclassifica-

tions. Thus, the semantic graph serves to visualize if and how 

K-CM understood the problem.
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